Some Algorithmic Results on Restrained Domination in Graphs
نویسندگان
چکیده
A set D ⊆ V of a graph G = (V,E) is called a restrained dominating set of G if every vertex not in D is adjacent to a vertex in D and to a vertex in V \D. The MINIMUM RESTRAINED DOMINATION problem is to find a restrained dominating set of minimum cardinality. Given a graph G, and a positive integer k, the RESTRAINED DOMINATION DECISION problem is to decide whether G has a restrained dominating set of cardinality a most k. The RESTRAINED DOMINATION DECISION problem is known to be NP-complete for chordal graphs. In this paper, we strengthen this NPcompleteness result by showing that the RESTRAINED DOMINATION DECISION problem remains NP-complete for doubly chordal graphs, a subclass of chordal graphs. We also propose a polynomial time algorithm to solve the MINIMUM RESTRAINED DOMINATION problem in block graphs, a subclass of doubly chordal graphs. The RESTRAINED DOMINATION DECISION problem is also known to be NP-complete for split graphs. We propose a polynomial time algorithm to compute a minimum restrained dominating set of threshold graphs, a subclass of split graphs. In addition, we also propose polynomial time algorithms to solve the MINIMUM RESTRAINED DOMINATION problem in cographs and chain graphs. Finally, we give a new improved upper bound on the restrained domination number, cardinality of a minimum restrained dominating set in terms of number of vertices and minimum degree of graph. We also give a randomized algorithm to find a restrained dominating set whose cardinality satisfy our upper bound with a positive probability.
منابع مشابه
$k$-tuple total restrained domination/domatic in graphs
For any integer $kgeq 1$, a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-tuple total dominating set of $G$ if any vertex of $G$ is adjacent to at least $k$ vertices in $S$, and any vertex of $V-S$ is adjacent to at least $k$ vertices in $V-S$. The minimum number of vertices of such a set in $G$ we call the $k$-tuple total restrained domination number of $G$. The maximum num...
متن کاملOn Roman, Global and Restrained Domination in Graphs
In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination num...
متن کاملResults on Total Domination and Total Restrained Domination in Grid Graphs
A set S of vertices in a graph G(V,E) is called a total dominating set if every vertex v ∈ V is adjacent to an element of S. A set S of vertices in a graph G(V,E) is called a total restrained dominating set if every vertex v ∈ V is adjacent to an element of S and every vertex of V − S is adjacent to a vertex in V − S. The total domination number of a graph G denoted by γt(G) is the minimum card...
متن کاملSecure Restrained Domination in the Join and Corona of Graphs
Let G be a connected simple graph. A restrained dominating set S of the vertex set of G, V (G) is a secure restrained dominating set of G if for each u ∈ V (G) \ S, there exists v ∈ S such that uv ∈ E(G) and the set (S \ {v}) ∪ {u} is a restrained dominating set of G. The minimum cardinality of a secure restrained dominating set of G, denoted by γsr(G), is called the secure restrained dominatio...
متن کاملResults on Total Restrained Domination in Graphs
Let G = (V,E) be a graph. A set S ⊆ V (G) is a total restrained dominating set if every vertex of G is adjacent to a vertex in S and every vertex of V (G)\S is adjacent to a vertex in V (G)\S. The total restrained domination number of G, denoted by γtr(G), is the smallest cardinality of a total restrained dominating set of G. In this paper we continue the study of total restrained domination in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.02340 شماره
صفحات -
تاریخ انتشار 2016